Just the two of us –
new hybrid binder for
wood-based panels

Claus Fueger, Jean-Pierre Lindner,
Ralph Lunkwitz, Stephan Weinkoetz

11th European Wood-based Panel Symposium
11 October 2018
At a first glance, UF and pMDI are not really ideal components to combine

<table>
<thead>
<tr>
<th>Urea formaldehyde resin (UF)</th>
<th>Isocyanate (pMDI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>polar</td>
<td>polarity</td>
</tr>
<tr>
<td>good</td>
<td>miscibility with water</td>
</tr>
<tr>
<td>polycondensation (elimination of water)</td>
<td>reaction mode</td>
</tr>
</tbody>
</table>
At a first glance, UF and pMDI are not really ideal components to combine

Nevertheless, they can act synergistically!
Polyurea network contributes to final board properties

Curing of pMDI \rightarrow polyurea network

Microscopy of a particle board
\Rightarrow (partially) separate curing of UF and pMDI

pMDI: red fluorescent
UF: blue fluorescent

Source: Brodel, Zillessen, Marutzky, unpublished results
Synergistic effect: reactivity increase

Curing onset is shifted to lower temperature

Potential explanation:
UF methylol groups react with isocyanate

Simon, et al., Holzforschung, 2002, 56, 327-334
and
These known UF/pMDI synergies are already used by particle board producers to increase productivity.

\[x\% = \text{relative maximum process speed}^* \]

Can we enhance this effect?

Is it possible to increase speed by more than 10%?

* BASF internal data, estimated for particle board production
The purpose of our R&D project

deepen the understanding of the UF/pMDI synergies

develop a new isocyanate component to enhance synergies

reduce cost in particle board production
Unique conditions
Two binder types – one company

- **Production**
 several facilities for amino resins and isocyanates

- **Application**
 long term experience with both wood-binder technologies

- **Research**
 strong expertise for condensation resins and polyurethanes
The technological concept: additional activation of the UF by an improved isocyanate component
known effect of previous hybrid systems
(standard UF + standard pMDI)

Proof of concept by DSC measurements

![DSC Measurement Graph]

- Heat flow [W/g]
- Temperature [°C]

Legend:
- UF + hardener
- UF + hardener + pMDI
Proof of concept by DSC measurements

known effect of previous hybrid systems
(standard UF + standard pMDI)

enhanced effect of test system
(standard UF + improved isocyanate)
From the test system to the final formulation

<table>
<thead>
<tr>
<th>Optimization of reactivity</th>
<th>Final formulation</th>
<th>Standard pMDI (for comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCO number(^1) ca. 32% + additional adjustments</td>
<td>NCO number(^1) ca. 32%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjustment of viscosity</th>
<th>Final formulation</th>
<th>Standard pMDI (for comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mPas(^2)</td>
<td>ca. 250 mPas(^2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension of storage stability</th>
<th>Final formulation</th>
<th>Standard pMDI (for comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 6 months</td>
<td>> 6 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab board trials</th>
<th>Final formulation</th>
<th>Standard pMDI (for comparison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant reduction of presstime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suitable board properties</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) ASTM D 5155
\(^2\) at 25 °C, DIN 53018
Final check by pilot customer trials

- 18 mm particle boards on a continuous line (without pre-heating)

Typical recipe (E1)

- **Surface**: 10% Kaurit glue 347 S + hardener
- **Core**: 7% Kaurit glue 347 S + hardener + 0.4% new pMDI
- **Surface**: 10% Kaurit glue 347 S + hardener

Large scale trials (> 20 tons new pMDI): Reliable speed increase by > 20%

Confirmed by a trial with a second pilot customer

First customer trials: speed increase > 15%
Product Launch in September 2018

Kauranat MS 1001: special pMDI grade for UF/pMDI hybrid binders

- can be used like standard pMDI (storage, safety, application, etc.)

- enables higher productivity at same emission level
- enables lower FA emission at same production speed

New product
Drop-in solution
Benefits
Important to know

- Mixed immediately before application (preferred) or separate application
- FA emission is mainly determined by the UF component

New hybrid binder
UF + Kauranat MS 1001

Binder system for the core layer (not recommended for surface layers)

- Contribution of Kauranat to board properties (IB and swelling) analogous to standard pMDI

Recommended ratio
UF (solids) : Kauranat = 100 : 3 to 100 : 10
Just the two from us

Kaurit glue + Kauranat MS 1001

New hybrid binder for the core layer of particle boards

Benefit

Increased productivity by > 20 %